Search
Close this search box.
Search

Korean scientists develop breath sensor that spots disease biomarkers

While the breath can hold a lot of information about what’s going on inside the body, the variety of gasses present and the large amount of water vapor make it very difficult to spot biomarkers present at concentrations approaching as low as a few parts per billion. To deal with this, South Korean researchers at KAIST have developed a breath sensor that uses protein-encapsulated nanocatalysts to spot certain biomarkers of diseases.

Right now, breath pattern recognition is still a futuristic diagnostic method.  Being able to simplify the characterizing of target gas concentrations of human exhaled breath will lead to easier diagnosing of diseases as well as physical condition.  A Korea Advanced Institute of Science and Technology in South Korea research group under Prof. Il-Doo Kim in the Department of Materials Science has developed diagnostic sensors using protein-encapsulated nanocatalysts, which can diagnose certain diseases by analyzing human exhaled breath.

This technology enables early monitoring of various diseases through pattern recognition of biomarker gases related to diseases in human exhalation. The prototype device features sixteen sensorsin all, each able to spot a specific chemical that is a signature of various health parameters. They rely on newly developed heterogeneous nanocatalysts, functionalized on metal oxide nanofiber sensing layers, that were build using protein templates that are 2 nanometers in size.

Gasses related to diseases

In human breath, components such as water vapor, hydrogen, acetone, toluene, ammonia, hydrogen sulfide, and carbon monoxide, are more excessively exhaled from patients. Some of these components are closely related to diseases such as asthma, lung cancer, type 1 diabetes mellitus, and halitosis.
Breath analysis for disease diagnosis started from capturing exhaled breaths in a Tedlar bag and inhecting captured breath gases into a miniaturized sensor system, similar to an alcohol detector. It is possible to analyze exhaled breath very rapidly with a simple analyzing process. The breath analysis can detect trace changes in exhaled breath components, which contribute to early diagnosis of diseases.

However, technological advances are needed to accurately analyze gases in the breath, which occur at very low levels, from 1 ppb to 1 ppm. In particular, it has been a critical challenge for chemiresistive type chemical sensors to selectively detect specific biomarkers in thousands of interfering gases including humid vapor.

Overcoming current limitations

Conventionally, noble metallic catalysts such as platinum and palladium have been functionalized onto metal oxide sensing layers. But the gas sensitivity was not enough to detect ppb-levels of biomarker species in exhaled breath.  To overcome current limitations, the research team utilized nanoscale protein (apoferritin) in animals as sacrificial templates. The protein templates possess hollow nanocages at the core site and various alloy catalytic nanoparticles can be encapsulated inside the protein nanocages.

These protein nanocages are advantageous because a nearly unlimited number of material compositions in the periodic table can be assembled for the synthesis of heterogeneous catalytic nanoparticles. The research team developed outstanding sensing layers consisting of metal oxide nanofibers functionalized by the heterogeneous catalysts with large and highly-porous surface areas, which are especially optimized for selective detection of specific biomarkers.

The biomarker sensing performance was improved approximately 3~4-fold as compared to the conventional single component of platinum and palladium catalysts-loaded nanofiber sensors. In particular, 100-fold resistance transitions toward acetone (1 ppm) and hydrogen sulfide (1 ppm) were observed in exhaled breath sensors using the heterogeneous nanocatalysts, which is the best performance ever reported in literature.

The research team also developed a disease diagnosis platform that recognizes individual breathing patterns by using a multiple sensor array system with diverse sensing layers and heterogeneous catalysts, so that the people can easily identify health abnormalities. Using a 16-sensor array system, physical conditions can be continuously monitored by analyzing concentration changes of biomarkers in exhaled breath gases.

Prof. Kim explains that new types of heterogeneous nanocatalysts were synthesized using protein templates with sizes around 2 nm and functionalized on various metal oxide nanofiber sensing layers. The established sensing libraries can detect biomarker species with high sensitivity and selectivity. “The new and innovative breath gas analysis platform will be very helpful for reducing medical expenditures and continuous monitoring of physical conditions.” 

Whixx

ICT&health World Conference 2024

Experience the future of healthcare at the ICT&health World Conference from May 14th to 16th, 2024!
Secure your ticket now and immerse yourself in groundbreaking technologies and innovative solutions.
Engage with fellow experts and explore the power of global collaborations.

Share this article!

Read also
Balancing regulatory compliance with seamless adoption, healthcare navigates the integration of AI solutions.
A guide to implementing AI in healthcare amid the EU AI Act
AmyWebb-Stephen-Olker
Futurist Amy Webb claims that wearables will evolve into "connectables"
Digital health solutions empower patients to better manage their health and integrate care into their daily lives.
How to improve Digital Patient Engagement to streamline workflows
For people with diabetes, inaccurate blood glucose measurements can lead to errors in diabetes management, including taking the wrong dose of insulin, sulfonylureas, or other medications that can rapidly lower blood glucose.
Smartwatches measuring glucose level: Harmful but easy to buy fake innovations
How to introduce innovation and AI in healthcare organizations if there is no business model for prevention and quality – Our interview with Professor Ran Balicer, the Chief Innovation Officer at Clalit Health Services and founding Director of Clalit Research Institute.
I see no legitimate rationale for delaying the digital transformation in healthcare
Pioneering Cardiac Arrest Detection for Enhanced Survival.
CardioWatch Revolutionizes Cardiac Arrest Detection
Dr. Oscar Díaz-Cambronero, Head of Perioperative Medicine Department at La Fe Hospital, spearheads innovative telemonitoring initiatives revolutionizing patient care
Smartwatches Saving Lives Inside and Outside the Hospital
EIT 2024
EIT Awards 2024. Two European startups are revolutionizing the treatment of cardiovascular diseases
Bertrand Piccard, Swiss explorer and founder of the Solar Impulse Foundation
EIT Summit 2024. What are the trigger points that drive or inhibit innovation?
MMC pioneers wireless monitoring for premature infants with the innovative Bambi Belt, revolutionizing care with improved comfort and mobility.
Wireless Monitoring of Vital Signs in Premature Infants at Máxima MC
Follow us