Search
Close this search box.
Search

Calltech researchers develop miniature chip that monitors body from inside

Researchers at Caltech have developed a prototype miniature medical device that could ultimately be used in smart pills to diagnose and treat diseases. A key to the new technology—and what Calltech believes, makes it unique among other microscale medical devices—is that its location can be precisely identified within the body, something that proved challenging before.

Azita Emami talks about eventually having microscale devices that are roaming our bodies and either diagnosing problems or fixing things. Emami is the Andrew and Peggy Cherng Professor of Electrical Engineering and Medical Engineering and Heritage Medical Research Institute Investigator.  He co-led the research along with Assistant Professor of Chemical Engineering and Heritage Medical Research Institute Investigator Mikhail Shapiro. "Before now, one of the challenges was that it was hard to tell where they are in the body." A paper describing the new device appears in the September issue of the journal Nature Biomedical Engineering).

Device borrows from MRI

The new silicon-chip device is called ATOMS, which is short for addressable transmitters operated as magnetic spins. It borrows from the principles of magnetic resonance imaging (MRI), in which the location of atoms in a patient’s body is determined using magnetic fields. The microdevices would also be located in the body using magnetic fields—but rather than relying on the body’s atoms, the chips contain a set of integrated sensors, resonators, and wireless transmission technology that would allow them to mimic the magnetic resonance properties of atoms.

"A key principle of MRI is that a magnetic field gradient causes atoms at two different locations to resonate at two different frequencies, making it easy to tell where they are," explains Shapiro. "We wanted to embody this elegant principle in a compact integrated circuit. The ATOMS devices also resonate at different frequencies depending on where they are in a magnetic field."

"We wanted to make this chip very small with low power consumption, and that comes with a lot of engineering challenges," adds Emami. "We had to carefully balance the size of the device with how much power it consumes and how well its location can be pinpointed."

Miniature robotic wardens of our bodies

Though the devices are still preliminary, they could one day serve as miniature robotic wardens of our bodies, monitoring a patient’s gastrointestinal tract, blood, or brain. The devices could measure factors that indicate the health of a patient—such as pH, temperature, pressure, sugar concentrations—and relay that information to doctors. Or, the devices could even be instructed to release drugs.

Shapiro elaborates: "You could have dozens of microscale devices traveling around the body taking measurements or intervening in disease. These devices can all be identical, but the ATOMS devices would allow you to know where they all are and talk to all of them at once. Shapiro compares it to the 1966 sci-fi movie Fantastic Voyage, in which a submarine and its crew are shrunk to microscopic size and injected into the bloodstream of a patient to heal him from the inside—but, as Shapiro says, "instead of sending a single submarine, you could send a flotilla."

Keeping power low was challenge

"This chip is totally unique: there are no other chips that operate on these principles," says Manuel Monge, a student in Emami’s lab and a Rosen Bioengineering Center Scholar at Caltech during the development of the device and lead author of the paper published about ATOMS. "Integrating all of the components together in a very small device while keeping the power low was a big task." Monge did this research as part of his PhD thesis, which was recently honored with the Charles Wilts Prize by Caltech’s Department of Electrical Engineering.

The final prototype chip, which was tested and proven to work in mice, has a surface area of 1.4 square millimeters, 250 times smaller than a penny. It contains a magnetic field sensor, integrated antennas, a wireless powering device, and a circuit that adjusts its radio frequency signal based on the magnetic field strength to wirelessly relay the chip’s location. "In conventional MRI, all of these features are intrinsically found in atoms," says Monge. "We had to create an architecture that functionally mimics them for our chip."

Whixx

ICT&health World Conference 2024

Experience the future of healthcare at the ICT&health World Conference from May 14th to 16th, 2024!
Secure your ticket now and immerse yourself in groundbreaking technologies and innovative solutions.
Engage with fellow experts and explore the power of global collaborations.

Share this article!

Read also
Balancing regulatory compliance with seamless adoption, healthcare navigates the integration of AI solutions.
A guide to implementing AI in healthcare amid the EU AI Act
AmyWebb-Stephen-Olker
Futurist Amy Webb claims that wearables will evolve into "connectables"
Digital health solutions empower patients to better manage their health and integrate care into their daily lives.
How to improve Digital Patient Engagement to streamline workflows
For people with diabetes, inaccurate blood glucose measurements can lead to errors in diabetes management, including taking the wrong dose of insulin, sulfonylureas, or other medications that can rapidly lower blood glucose.
Smartwatches measuring glucose level: Harmful but easy to buy fake innovations
How to introduce innovation and AI in healthcare organizations if there is no business model for prevention and quality – Our interview with Professor Ran Balicer, the Chief Innovation Officer at Clalit Health Services and founding Director of Clalit Research Institute.
I see no legitimate rationale for delaying the digital transformation in healthcare
Pioneering Cardiac Arrest Detection for Enhanced Survival.
CardioWatch Revolutionizes Cardiac Arrest Detection
Dr. Oscar Díaz-Cambronero, Head of Perioperative Medicine Department at La Fe Hospital, spearheads innovative telemonitoring initiatives revolutionizing patient care
Smartwatches Saving Lives Inside and Outside the Hospital
EIT 2024
EIT Awards 2024. Two European startups are revolutionizing the treatment of cardiovascular diseases
Bertrand Piccard, Swiss explorer and founder of the Solar Impulse Foundation
EIT Summit 2024. What are the trigger points that drive or inhibit innovation?
MMC pioneers wireless monitoring for premature infants with the innovative Bambi Belt, revolutionizing care with improved comfort and mobility.
Wireless Monitoring of Vital Signs in Premature Infants at Máxima MC
Follow us